The Dana Center Mathematics Pathways © 2017 the Charles A. Dana Center at The University of Texas at Austin, with support from the Texas Association of Community Colleges

All intellectual property rights are owned by the Charles A. Dana Center or are used under license from the Carnegie Foundation for the Advancement of Teaching. The Texas Association of Community Colleges does not have rights to create derivatives.

Licensing for State of Texas Community Colleges

Unless otherwise indicated, the materials in this resource are the copyrighted property of the Charles A. Dana Center at The University of Texas at Austin (the University) with support from the Texas Association of Community Colleges (TACC). No part of this resource shall be reproduced, stored in a retrieval system, or transmitted by any means—electronically, mechanically, or via photocopying, recording, or otherwise, including via methods yet to be invented—without express written permission from the University, except under the following conditions:

- a) *Faculty and administrators* may reproduce and use one printed copy of the material for their personal use without obtaining further permission from the University, so long as all original credits, including copyright information, are retained.
- b) *Faculty may reproduce multiple copies of pages for student use in the classroom*, so long as all original credits, including copyright information, are retained.
- c) *Organizations or individuals other than those listed above* must obtain prior written permission from the University for the use of these materials, the terms of which may be set forth in a copyright license agreement, and which may include the payment of a licensing fee, or royalties, or both.

General Information About the Dana Center's Copyright

We use all funds generated through use of our materials to further our nonprofit mission. Please send your permission requests or questions to us at this address:

Charles A. Dana Center The University of Texas at Austin 1616 Guadalupe Street, Suite 3.206 Austin, TX 78701-1222 Fax: 512-232-1855 danaweb@austin.utexas.edu www.dcmathpathways.org

Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of The University of Texas at Austin. The Charles A. Dana Center and The University of Texas at Austin, as well as the authors and editors, assume no liability for any loss or damage resulting from the use of this resource. We have made extensive efforts to ensure the accuracy of the information in this resource, to provide proper acknowledgement of original sources, and to otherwise comply with copyright law. If you find an error or you believe we have failed to provide proper acknowledgment, please contact us at danaweb@austin.utexas.edu.

Reproduced by Pearson from electronic files supplied by the author.

We welcome your comments and suggestions for improvements. Please contact us at danaweb@austin.utexas.edu or at the mailing address above.

About the Charles A. Dana Center at The University of Texas at Austin

The Dana Center develops and scales math and science education innovations to support educators, administrators, and policy makers in creating seamless transitions throughout the K–14 system for all students, especially those who have historically been underserved.

We work with our nation's education systems to ensure that every student leaves school prepared for success in postsecondary education and the contemporary workplace—and for active participation in our modern democracy. We are committed to ensuring that the accident of where a student attends school does not limit the academic opportunities he or she can pursue. Thus, we advocate for high academic standards, and we collaborate with local partners to build the capacity of education systems to ensure that all students can master the content described in these standards.

Our portfolio of initiatives, grounded in research and two decades of experience, centers on mathematics and science education from prekindergarten through the early years of college. We focus in particular on strategies for improving student engagement, motivation, persistence, and achievement.

We help educators and education organizations adapt promising research to meet their local needs and develop innovative resources and systems that we implement through multiple channels, from the highly local and personal to the regional and national. We provide long-term technical assistance, collaborate with partners at all levels of the education system, and advise community colleges and states.

We have significant experience and expertise in the following:

- Developing and implementing standards and building the capacity of schools, districts, and systems
- Supporting education leadership, instructional coaching, and teaching
- Designing and developing instructional materials, assessments, curricula, and programs for bridging critical transitions
- Convening networks focused on policy, research, and practice

The Center was founded in 1991 at The University of Texas at Austin. Our staff members have expertise in leadership, literacy, research, program evaluation, mathematics and science education, policy and systemic reform, and services to high-need populations. We have worked with states and education systems throughout Texas and across the country. For more information about our programs and resources, see our homepage at www.utdanacenter.org.

About the Dana Center Mathematics Pathways

The Dana Center Mathematics Pathways (DCMP) is a systemic approach to improving student success and completion through implementation of processes, strategies, and structures based on four fundamental principles:

- 1. Multiple pathways with relevant and challenging mathematics content aligned to specific fields of study
- 2. Acceleration that allows students to complete a college-level math course more quickly than in the traditional developmental math sequence
- 3. Intentional use of strategies to help students develop skills as learners
- 4. Curriculum design and pedagogy based on proven practice

The Dana Center has developed curricular materials for three accelerated pathways—*Statistical Reasoning, Quantitative Reasoning,* and *Reasoning with Functions I* and *Reasoning with Functions II* (a two-course preparation for Calculus). The pathways are designed for students who have completed arithmetic or who are placed at a beginning algebra level. All three pathways have a common starting point—a developmental math course that helps students develop foundational skills and conceptual understanding in the context of college-level course material.

In the first term, we recommend that students also enroll in a learning frameworks course to help them acquire the strategies—and tenacity—necessary to succeed in college. These strategies include setting academic and career goals that will help them select the appropriate mathematics pathway.

In addition to the curricular materials, the Dana Center has developed tools and services to support project implementation. These tools and services include an implementation guide, data templates and planning tools for colleges, and training materials for faculty and staff.

Acknowledgments

The development of the Dana Center Mathematics Pathways curricular materials began with the formation of the **DCMP Curricular Design Team**, who set the design standards for the curricular materials of individual DCMP courses. The team members are:

Richelle (Rikki) Blair, Lakeland Community College (Ohio)	Sharon Sledge, San Jacinto College (Texas) Paula Wilhite, Northeast Texas Community College
Rob Farinelli, College of Southern Maryland	(Texas)
(Maryland)	Linda Zientek, Sam Houston State University (Texas)
Amy Getz, Charles A. Dana Center (Texas)	
Roxy Peck, California Polytechnic State University	
(California)	

The Dana Center then convened faculty from each of the DCMP codevelopment partner institutions to provide input on key usability features of the instructor supports in curricular materials and pertinent professional development needs. Special emphasis was placed on faculty who need the most support, such as new faculty and adjunct faculty. The **Usability Advisory Group** members are:

Ioana Agut, Brazosport College (Texas)	Juan Ibarra, South Texas College (Texas)
Eddie Bishop, Northwest Vista College (Texas)	Keturah Johnson, Lone Star College (Texas)
Alma Brannan, Midland College (Texas)	Julie Lewis, Kilgore College (Texas)
Ivette Chuca, El Paso Community College (Texas)	Joey Offer, Austin Community College (Texas)
Tom Connolly, Charles A. Dana Center (Texas)	Connie Richardson, Charles A. Dana Center (Texas)
Alison Garza, Temple College (Texas)	Paula Talley, Temple College (Texas)
Colleen Hosking, Austin Community College (Texas)	Paige Wood, Kilgore College (Texas)

Funding and support for the Dana Center Mathematics Pathways were provided by the Carnegie Corporations of New York, Bill & Melina Gates Foundation, Greater Texas Foundation, Houston Endowment, Kresge Foundation, Meadows Foundation, Noyce Foundation, the State of Texas, and TG.

Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of these funders or The University of Texas at Austin. This publication was also supported through a collaboration between the Charles A. Dana Center, Texas Association of Community Colleges, and Pearson Education, Inc.

Acknowledgments for Version 1.0

Initial development of the outcomes, framework, and sample prototype for the STEM-Prep pathway was supported by the Carnegie Corporation of New York. Development of the Reasoning with Functions I course, which is the first course in the STEM-Prep pathway, is funded by Houston Endowment, Kresge Foundation, and the State of Texas.

Unless otherwise noted, all staff listed are with the Charles A. Dana Center at The University of Texas at Austin.

Project Leads and Authors

Francisco Savina, project lead, course program specialist, mathematics
Stuart Boersma, lead author, professor of mathematics, Central Washington University (Ellensburg,
Washington)
Amy Getz, Amy Getz, strategic implementation lead
Connie J. Richardson, advisory lead, course program specialist, mathematics
Jeff Shaver, course program specialist, mathematics
John P. (JP) Anderson, professor of mathematics, San Jacinto College (Houston, Texas)
Thomas J. Connolly, instructional designer, University of Texas at Austin
Kelli Davis, assistant department chairperson - mathematics, South Texas College (McAllen, Texas)
Scott Guth, professor of mathematics and computer science, Mt. San Antonio College (Walnut, California)
David Hunter, professor of mathematics, Westmont College (Montecito, California)
Maura Mast, associate vice provost for undergraduate studies, University of Massachusetts (Boston,
Massachusetts)
Aaron Montgomery, professor of mathematics, Central Washington University (Ellensburg, Washington)
Jeff Morford, mathematics instructor, Henry Ford College (Dearborn, Michigan)

Joanne Peeples, mathematics instructor, El Paso Community College (El Paso, Texas)

Hilary Risser, associate professor and department chair of mathematical sciences, Montana Tech of the University of Montana (Butte, Montana)

Ann Sitomer, postdoctoral researcher, Oregon State University (Corvallis, Oregon)

Paula Talley, director of student success division and mathematics instructor, Temple College (Temple, Texas)

Reviewers

Caren Diefenderfer, professor of mathematics, Hollins University (Roanoke, Virginia) James Epperson, associate professor of mathematics, University of Texas at Arlington (Arlington, Texas) Justin Hill, mathematics instructor, Temple College (Temple Texas) Jeff Morford, mathematics instructor, Henry Ford College (Dearborn, Michigan) Jack Rotman, Lansing Community College (Lansing, Michigan)

Pilot Faculty

Rebecca Hartzler, faculty engagement lead, director of grants and special projects in STEM, Seattle Central Community College

Sandra L. Bowen Franz, associate professor, University of Cincinnati (Cincinnati, Ohio) Emily Constancio, professor of mathematics, Ranger College (Ranger, Texas)

John Harland, assistant professor of mathematics, Palomar College (San Marcos, California)

Justin Hill, mathematics instructor, Temple College (Temple, Texas)

Cynthia Martinez, chair of mathematics department, Temple College (Temple, Texas)

Wendy Metzger, professor of mathematics, Palomar College (San Marcos, California)

Paula Talley, director of student success division and mathematics instructor, Temple College (Temple, Texas)

Anne Voth, professor of mathematics, Palomar College (San Marcos, California)

Design Teams for the STEM-Prep Pathway (Reasoning with Functions I and Reasoning with Functions II)

Content Design Team

David M. Bressoud, DeWitt Wallace Professor, Macalester College (St. Paul, Minnesota) Helen Burn, professor of mathematics, Highline Community College (Des Moines, Washington) Marilyn P. Carlson, professor of mathematics education, Arizona State University (Tempe, Arizona) Eric Hsu, professor of mathematics, San Francisco State University Michael Oehrtman, associate professor, Oklahoma State University

Structure Design Team

John P. (JP) Anderson, professor of mathematics, San Jacinto College (Houston, Texas) Colleen Berg, mechanical engineering instructor, Texas Tech University (Lubbock, Texas) Caren Diefenderfer, professor of mathematics, Hollins University (Roanoke, Virginia) Suzanne Dorée, professor of mathematics, Augsburg College (Minneapolis, Minnesota) Bekki George, instructional assistant professor, University of Houston, Main Campus (Houston, Texas) Suzette Goss, professor of mathematics, Lone Star College–Kingwood (Kingwood, Texas) Marc Grether, senior lecturer, University of North Texas (Denton, Texas) Debbie Hanus, mathematics faculty, Brookhaven College, Dallas County Community College System

(Farmers Branch, Texas)

Brian Loft, associate professor and chair, Sam Houston State University (Huntsville, Texas) Lyle O'Neal, associate professor of mathematics, Lone Star College–Kingwood (Kingwood, Texas) Debbie Pace, associate dean, College of Science and Mathematics, Stephen F. Austin State University

(Nacogdoches, Texas)

Joanne Peeples, professor of mathematics, El Paso Community College (El Paso, Texas) Virgil Pierce, professor of mathematics, the University of Texas–Pan American (Edinburg, Texas) Jim Roznowski, past president of American Mathematical Association of Two-Year Colleges (AMATYC)

Project Staff

Adam Castillo, graduate research assistant Rachel Jenkins, lead editor Monette C. McIver, manager, higher education services Erica Moreno, program coordinator Phil Swann, senior designer Sarah Wenzel, administrative associate

Pearson Education, Inc. Staff

Vice President, Editorial Jason Jordan Strategic Account Manager Tanja Eise Editor in Chief Anne Kelly Acquisitions Editor Chelsea Kharakozova Digital Instructional Designer Laura Armer Manager, Instructional Design Sara Finnigan Senior Project Manager Dana Toney Director of Course Production, MyMathLab Ruth Berry MathXL Content Developer Kristina Evans

Program Management Team Lead Karen Wernholm
Product Marketing Manager Alicia Frankel
Senior Author Support/Technology Specialist Joe Vetere
Rights and Permissions Project Manager Martha Shethar
Procurement Specialist Carol Melville
Associate Director of Design Andrea Nix
Program Design Lead Beth Paquin
Composition Dana Bettez

		Content	S			
Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
-	-	Curriculum Overview	xxiii	xix	-	-
-	-	Prep Week Ideas for your syllabus	xiv	-	-	-
Lesson	1: Des	cribing Quantities and Their Relationship	S			
1.A	-	Talking About Quantities Use function notation to make precise statements about quantities	1	1	1	1.A
1.B	-	Our Learning Community Student success focus Seek and give help	4	3	6	-
1.C	1.C	Talking About Quantities (Continued) Read, write, and use function notation Write formulas using function notation	6	5	16	1.C
1.D	1.D	Functions Identify when one quantity is a function of another quantity Identify when once quantity is not a function of another quantity	10	9	20	1.D
1.E	-	Functions (Continued) Determine whether one quantity is a function of another quantity using multiple representations (words, tables, formulas, or graphs)	14	11	24	1.E
Lesson	12: Wor	king with Inputs and Outputs				
2.A	2.A	Independence and Dependence Identify dependent and independent variable from a formula or graph	19	15	29	2.A
2.B	2.B	Processes Identify input values (independent variable) and output values (dependent variable) of functions described with words, formulas, tables, and graphs	24	19	34	2.B
2.C	2.C	Domain and Range Describe the domain and range for functions using inequality notation	30	23	39	2.C
2.D	-	More with Function Notation Create graphs of more complicated expressions involving function notation	34	27	44	2.D

 $\textcircled{\sc c}$ 2017 Charles A. Dana Center at The University of Texas at Austin

Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
Lessor	ר 3: Exp	loring Linear, Exponential, and Periodic	Models			
3.A	3.A	Linear Population Growth Write a linear function, given its starting value and rate of change Determine whether a linear function is increasing or decreasing from its graph, or from a table of values Use and interpret function notation	41	31	49	3.A
3.B	3.B	Models of Exponential Growth and Decay Find the percent rate of change of an exponential function Write a formula for an exponential function, given its starting value and percent rate of change Calculate the average rate of change of a function over a given interval Determine whether an exponential function is increasing or decreasing from its equation, from its graph, or from a table of values	47	37	54	3.B
3.C	3.C	Models With Periodic Functions Identify the period of a periodic function Use the period to predict future values of a periodic function Identify intervals over which a periodic function is increasing or decreasing Calculate the average rate of change of a periodic function over a given interval Interpret and use function notation	51	41	61	3.C
3.D	3.D	Comparing Linear, Exponential, and Periodic Functions Decide whether a given function appears to be linear, exponential, or periodic Predict future behavior of linear, exponential, and periodic functions	55	45	66	3.D
3.E	-	Forming Effective Study Groups Describe how to form and conduct an effective study group Identify key characteristics of effective study groups	61		71	-

Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
Lessor	ו 4: Exp	loring Logarithmic Models				
4.A	4.A	Introduction to Piecewise Defined Functions Graph a piecewise defined function, given data tables and/or algebraic descriptions of the function on two or more intervals Write the equation of a piecewise defined function, given the equations that describe its behavior on each interval	63	51	76	4.A
4.B	4.B	Interpreting the Behavior of Logarithmic Functions Use various representations of a new function to calculate its average rate of change over different intervals	67	55	81	4.B
4.C	-	Interpreting the Behavior of Logarithmic Functions (Continued) Use various representations of a logarithmic function to calculate its average rate of change on given intervals	73	59	87	4.C
4.D	4.D	Investigating Other Functions Calculate and interpret average rates of change on given intervals	78	63	91	4.D
Lessor	ז 5: Moo	deling Constant Change				
5.A	5.A	Linear Functions and Equations Identify a linear relationship using rate of change Use information about constant rate of change and initial value to write a linear equation	83	67	97	5.A
5.B	5.B	Linear Functions and Equations (Continued) Identify linear relationships using multiple representations, including graphical representations, tabular representations, and verbal descriptions Create new functions by using the output values of one function as the input values to a second function	88	71	102	5.B

Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
5.C	5.C	Straight Talk About Lines Use the slope-intercept formula to find the equation of a line, given information about the slope and vertical intercept of that line Use the point-slope formula to find the equation of a line, given information about the slope of that line and a point lying on the line	94	75	108	5.C
5.D	5.D	Straight Talk About Lines (Continued) Use information about two points on a line to find the equation for that line Use information about a point on a line and its slope to find the equation of the line	99	79	113	5.D
Lessor	n 6: Mal	king Predictions with Lines				
6.A	6.A	Slope and Intercept Determine the sign of the slope and vertical intercept of a linear function based on the graph of the function Determine the relative sizes of the slope and vertical intercept of a linear function based on the graph of the function Graphically estimate the solution of a linear equation	104	83	118	6.A
6.B	6.B	Golfing on the Moon Determine the exact formula for reversing a linear formula	109	87	124	6.B
6.C	6.C	Finding Intersections of Lines Determine the exact intersection point of two lines	112	89	129	6.C
6.D	6.D	Graphing With Technology Plot functions using a graphing calculator or app Adjust the viewing window to see the important features of the graph Calculate specific output values of a function usinga graphing device Find the coordinates of important points on a graph using a graphing device	115	91	135	6.D
Lessor	n 7: Moo	deling with Two Lines				
7.A	7.A	Solving Systems of Linear Equations Graphically Find the intersection of two lines using graphing technology	119	95	143	7.A

Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
7.B	7.B	Determining the Number of Solutions Determine the number of solutions of a system of two linear equations	123	99	148	7.B
7.C	7.C	Solving Systems Using Substitution Use substitution to solve a system of linear equations algebraically	129	103	155	7.C
7.D	7.D	Elimination by Addition Solve a system of equations using elimination by addition	133	107	160	7.D
7.E	7.E	Maximum Heart Rate Solve a system of equations using an appropriate method Interpret the solution of a system within the given context	138	111	164	7.E
Lessor	n 8: Usin	g Matrices to Find Solutions (Optional)				
8.A	8.A	Matrices and Linear Systems Represent a linear system with a matrix Reconstruct a linear system from a matrix	141	113	168	8.A
8.B	8.B	Row Echelon Form Set up a linear system to solve an application problem Use row operations to put a matrix into row echelon form Solve a linear system from a matrix in row echelon form	145	117	173	8.B
8.C	8.C	Strategies for Solving Linear Systems Use row operations to put an augmented matrix into row echelon form Interpret linear systems that have no solutions or infinitely many solutions	149	121	177	8.C
Lessor	n 9: Moo	deling with Curves				
9.A	9.A	Quadratic Functions Multiply two linear factors to obtain a formula for a quadratic function in standard form Compute the first and second differences of a function Interpret the first and second differences of a function in the context of a problem	152	123	181	9.A

Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
9.B	9.B	Properties of Quadratic Functions Use graphing technology to find the vertex and intercepts of a quadratic function Use graphing technology to find the input values that correspond to a given output value Interpret quadratic functions in the context of a model	158	127	187	9.B
9.C	9.C	Unit Cost Recognize quadratic functions by their numerical and graphical properties Show that a function is a quadratic by simplifying its formula Apply the quotient rule for exponents	164	133	192	9.C
Lesson	10: Shi	ifting, Scaling, and Inverting Quadratic F	unctions			
10.A	10.A	Transformations of Quadratic Functions Apply shifts and scales to a quadratic function to fit a model Locate the vertices and horizontal intercepts of certain quadratic functions	169	137	197	10.A
10.B	10.B	Composing and Inverting Transformations Apply a sequence of transformations to a quadratic function Invert a sequence of transformations Identify a sequence of transformations to get from one quadratic function to another	174	141	204	10.B
10.C	10.C	Modeling With Quadratic Functions Translate between the different forms of a quadratic function Choose the appropriate form of a quadratic function to answer questions about a model	179	145	210	10.C
10.D	10.D	Solving Quadratic Equations Solve quadratic equations using the quadratic formula Factor quadratic expressions	182	147	215	10.D
10.E	10.E	Rates of Change and Total Change Deriver a formula for a function that represents the area under a line Interpret total change and rate of change in the context of a model	187	151	220	10.E

Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
Lessor	ו 11: Ex	ploring Inverse Relationships				
11.A	11.A	Reversing a Quadratic Function Write a formula for the inverse of a function of the form f(x)=ax ² Graph the resulting square root function	190	153	225	11.A
11.B	11.B	The Inverse of a Linear Function Use composition to decide whether two linear functions are inverses of one another Find the inverse of a linear function Use tabular data to discuss the existence of inverse functions	195	157	230	11.B
11.C	11.C	The Inverse of a Quadratic Function Identify ways to restrict the domain of a quadratic function in order to make it one- to-one Find the inverse of a quadratic function (given an appropriate domain restriction)	199	161	237	11.C
11.D	11.D	What Is a Meter? Find the inverse of a square root function	204	165	243	11.D
11.E	11.E	How Fast? Estimate the instantaneous rate of change for a given function	210	169	250	11.E

Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
Lesson	n 12: Mo	odeling with Power Functions				
12.A	12.A	Introduction to Power Functions Evaluate and graph power functions Compare and contrast different power functions	215	173	255	12.A
12.B	12.B	Introduction to Power Functions (Continued) Evaluate power functions with negative exponents Describe changes in inputs and outputs of power functions Solve equations involving power functions	220	177	261	12.B
12.C	12.C	Illuminance Identify graphs of power functions Compute and describe the rate-of-change behavior functions with negative integer exponents Solve equations involving power functions	225	181	267	12.C
Lesson	n 13: Wo	orking with Volume and Optimization Mo	odels			
13.A	13.A	Graphing Polynomial Functions Use a graphing calculator or app to view the graphs of polynomials, setting viewing windows appropriately Use a graphing calculator or app to investigate the features of the graph of a polynomial	229	185	272	13.A
13.B	13.B	Building Polynomial Models Given a list of roots, construct a formula for a polynomial with those roots Apply shifts and scales to fit a polynomial to a model Multiply polynomials	233	189	278	13.B
13.C	13.C	Optimization Construct a polynomial function to model the volume of certain objects Use models to decide what the optimal dimensions of a container should be	237	193	283	13.C
13.D	13.D	Strategies for Factoring Polynomials Find factors of a polynomial Convert a polynomial from standard from to factored form		197	288	13.D

Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
Lesson	14: Inte	erpreting Change in Polynomial Models				
14.A	14.A	Average Rates of Change Compute the average rate of change of a polynomial function over an interval Represent the average rate of change as a function	245	201	293	14.A
14.B	14.B	Average Rates of Change (Continued) Derive a formula for a function given the average rate of change of a polynomial function	249	205	298	14.B
14.C	14.C	Modeling with Polynomial Functions Use a graphing calculator or app to investigate thegraphs of polynomial functions, choosing an appropriate viewing window Make decisions by interpreting a polynomial model	252	207	303	14.C
14.D	14.D	Modeling with Polynomial Functions (Continued) <i>Compose functions in the context of a model</i> <i>Calculate or estimate the total change of a quantity given a graph of its rate of change</i> <i>versus time</i>	256	209	308	14.D
Lesson	15: Wo	rking with Fractional Exponents				
15.A	15.A	Fractional Exponents Rewrite an expression that contains radicals by using fractional exponents Apply the rules of exponents to simplify an expression containing fractional exponents Evaluate and interpret expressions written with fractional exponents	262	213	313	15.A
15.B	15.B	Functions With Fractional Exponents Evaluate and interpret simple expressions containing fractional exponents Fund an inverse for a function with fractional exponents	267	217	318	15.B
15.C	15.C	Graphs of Functions With Fractional Exponents Identify and describe properties of a graph, such as increasing or decreasing, or opening upward or downward, using intervals in the domain	271	221	324	15.C

Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
Lesso	n 16: Un	derstanding Discontinuities and End Bet	navior			
16.A	16.A	Discontinuities of Rational Functions Describe and identify the different behaviors of rational functions	279	225	300	16.A
16.B	16.B	End Behavior of Rational Functions Describe the behavior of a rational function for large input values	282	229	336	16.B
Lessor	n 17: Ex	ploring Asymptomatic Behavior				
17.A	17.A	Vertical Asymptotes Locate the vertical asymptotes on the graph of a rational function using algebra Interpret the behavior of a rational function near its vertical asymptotes in the context of a model	289	231	342	17.A
17.B	17.B	Behavior Near Vertical Asymptotes Find the vertical asymptotes and zeros of a rational function using algebra Interpret the behavior of a rational function on intervals near its vertical asymptotes and holes in the context of a model	293	235	347	17.B
17.C	17.C	Vertical Asymptotes vs. Holes Find all the discontinuities of a rational function and determine which ones correspond to vertical asymptotes Interpret the meaning of vertical asymptotes and holes in the context of a model	299	239	352	17.C
17.D	17.D	Strategies for Understanding Vertical Asymptotes Determine the behavior of the graph of a function on both sides of a vertical asymptote using algebra Sketch the graphs of rational functions near vertical asymptotes without using a calculator or app Find a formula for a rational function to match a given graph	303	243	357	17.D

Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
Lessor	n 18: Mo	odeling with Rational Functions				
18.A	18.A	You're Getting Very Sleepy Use the leading terms in the numerator and denominator of a rational function to predict the long-term behavior of the function Use limit notation to describe the behavior of a rational function for large values of its input	309	247	363	18.A
18.B	18.B	Reducing Pollution Write an equation for the horizontal asymptote of a rational function	313	251	370	18.B
18.C	18.C	Food Costs Use the equation of a rational function to determine whether the graph of the function has a horizontal asymptote, a slant asymptote, or neither of these If a rational function's graph has a slant asymptote, find the slope of this asymptote	319	255	379	18.C
Lessor	ו 19: Ex	ploring Graphs of Rational Functions				
19.A	19.A	Graphing Rational Functions Identify common limitations in computer- generated graphs of rational functions	324	259	385	19.A
19.B	19.B	Extreme Values of Rational Functions Create a hand-drawn graph with non- constant scale that shows all the features of a rational function	328	263	390	19.B
19.C	19.C	Drug Concentration Use data points to match a model to date Use a model to make predictions	333	267	397	19.C
19.D	19.D	Special Relativity Compute the relative velocity of an object under special relativity	336	269	403	19.D
Lessor	ם 20: Un	derstanding Addition and Composition	of Rational	Functions		
20.A	20.A	Composition of Rational Functions Compose two functions when one or both of the functions is a rational function	339	273	408	20.A
20.B	20.B	Adding It All Up Add two rational expressions by finding a common denominator	347	287	415	20.B

Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
20.C	20.C	Adding Rational Functions Add rational functions to form a new rational function	349	279	421	20.C
20.D	20.D	Adding Rational Functions (Continued) Add two rational functions by finding the lowest common denominator Use graphs and other approaches to explore	353	281	426	20.D
Lessor	n 21: Co	omparing Graphs of Functions				
21.A	21.A	Exponential Functions – Revisited Graph exponential functions Identify and compare graphs of exponential functions based on their growth/decay rates	359	285	433	21.A
21.B	21.B	Other Forms of Exponential Functions Calculate the value of an exponential function with a formula involving the number e, particularly when the independent variable has a negative value Reason graphically about rates of change of exponential functions	365	289	439	21.B
21.C	21.C	Comparing Exponential and Linear Functions Reinforcing the basic distinction between exponential and linear models: constant rate of change vs. constant percentage change	371	295	445	21.C
Lesson 22: Interpreting Change in Exponential Models						
22.A	22.A	Half-life and Decay Models Find a formula to measure the average rate of change of an exponential function Classify the behavior of a function that calculates the average rate of change of an exponential function	376	299	451	22.A
22.B	22.B	Doubling Time and Growth Models Write a formula for the average rate of change of an exponential function	379	303	457	22.B

Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
22.C	22.C	Comparing Exponential Functions Use information about the constants a and C to describe the shape of the graph of x y = Ca Compare two exponential functions using information about the initial values and the bases	382	305	462	22.C
Lessor	n 23: Exj	oloring Other Exponential Models				
23.A	23.A	Newton's Law of Cooling Describe how the temperature of an object is decreasing using newton's Law of Cooling	388	309	469	23.A
23.B	23.B	Drug Accumulation and Exponential Models Check that a function's average rate of change agrees with a given scenario	392	311	474	23.B
23.C	23.C	Surge Functions Calculate the value of a function that contains an exponential factor (surge function) Reason and make decisions in the context of practical applications of surge functions	395	315	480	23.C
Lessor	n 24: An	alyzing Linear Approximations of Expon	ential Mod	lels		
24.A	24.A	Linear Approximations of Exponential Functions Find a formula $f(x)$ for an exponential function given a line tangent to the graph of f and $x = 0$ Interpret exponential functions and their linear approximations in the context of a model	399	319	485	24.A
24.B	24.B	Compound Interest Use an exponential model for compound interest to answer questions and make decisions	403	323	491	24.B

Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
Lessor	ו 25: Ex	ploring Logistic Growth and Oscillation				
25.A	25.A	The Logistic Function Estimate the carrying capacity parameter for a logistic growth model, based on existing data that represents the early stages of population growth	407	327	496	25.A
25.B	25.B	Decaying Oscillations Determine a formula for an exponential function to match given data	409	329	502	25.B
25.C	25.C	Decaying Oscillations (Continued) Find a formula for a vertically shifted exponential function that matches given data	412	331	509	25.C
25.D	25.D	Charging and Discharging Capacitors Determine the formula for a function composition	416	333	514	25,.D
Lessor	י 26: Inv	verting Exponential Functions				
26.A	26.A	Inverse Exponentials Estimate input and output values for the inverse of exponential functions Sketch a graph of an inverse to an exponential function	419	337	518	26.A
26.B	26.B	Logarithms <i>Compute the output of logarithm functions</i>	423	339	523	26.B
26.C	26.C	Graphing Logs Graph a logarithm function by hand	427	343	530	26.C
26.D	26.D	Log Laws Use laws of logarithms to expand a single logarithm into a sum or difference of logarithms	431	345	535	26.D
26.E	26.E	Logarithmic Scales Compare inputs and outputs of logarithmic functions Use the laws of logarithms to simplify expressions	436	349	541	26.E

Lesson	Preview Assignment	Lesson Title and Description	In-Class Activities with Answers	In-Class Activities (Student)	Lesson Planning Suggestions	Practice Assignment
Lessor	n 27: So	lving Exponential and Logarithmic Equa	tions			
27.A	27.A	Savings Bonds Solve exponential equations Use the compound interest formula to calculate the doubling time for an investment Estimate the doubling time using the "rile of 72"	441	353	547	27.A
27.B	27.B	How Do You Rank? Solve exponential equations arising from logistic models and interpret the results	446	357	553	27.B
27.C	27.C	Earthquake! Solve equations containing one logarithmic expression	449	359	559	27.C
27.D	27.D	Extraneous Solutions Solve equations containing more than one logarithmic expression	453	363	565	27.D

Student Resources				
Overview	p. 1			
Arithmetic with Fractions	p. 3			
Combining Like Terms	p. 11			
Coordinate Plane	p. 14			
Dimensional Analysis	p. 18			
Distributive Property	p. 24			
Exponent Rules	p. 26			
Factoring	p. 29			
Factoring Polynomials	p. 38			
Four Representations of Functions	p. 44			
Graphing Technology	p. 47			
Interval Notation	p. 63			
Lines	p. 65			
Order of Operations	p. 70			
Roots and Radicals	p. 71			
Scientific Notation	p. 77			
Slope	p. 79			
Solving Quadratic Equations	p. 81			
Writing Principles	p. 86			
Glossary	Glossary - 1			