The Dana Center Mathematics Pathways © 2017 the Charles A. Dana Center at The University of Texas at Austin, with support from the Texas Assoc iation of Community Colleges

All intellectual property rights are owned by the Charles A. Dana Center or are used under license from the Carnegie Foundation for the Advancement of Teaching. The Texas Association of Community Colleges does not have rights to create derivatives.

Licensing for State of Texas Community Colleges

Unless otherwise indicated, the materials in this resource are the copyrighted property of the Charles A. Dana Center at The University of Texas at Austin (the University) with support from the Texas Association of Community Colleges (TACC). No part of this resource shall be reproduced, stored in a retrieval system, or transmitted by any means-electronically, mechanically, or via photocopying, recording, or otherwise, including via methods yet to be invented-without express written permission from the University, except under the following conditions:
a) Faculty and administrators may reproduce and use one printed copy of the material for their personal use without obtaining further permission from the University, so long as all original credits, including copyright information, are retained.
b) Faculty may reproduce multiple copies of pages for student use in the classroom, so long as all original credits, including copyright information, are retained.
c) Organizations or individuals other than those listed above must obtain prior written permission from the University for the use of these materials, the terms of which may be set forth in a copyright license agreement, and which may include the payment of a licensing fee, or royalties, or both.

General Information About the Dana Center's Copyright

We use all funds generated through use of our materials to further our nonprofit mission. Please send your permission requests or questions to us at this address:

Charles A. Dana Center
The University of Texas at Austin
1616 Guadalupe Street, Suite 3.206
Austin, TX 78701-1222

Fax: 512-232-1855
danaweb@austin.utexas.edu
www.dcmathpathways.org

Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of The University of Texas at Austin. The Charles A. Dana Center and The University of Texas at Austin, as well as the authors and editors, assume no liability for any loss or damage resulting from the use of this resource. We have made extensive efforts to ensure the accuracy of the information in this resource, to provide proper acknowledgement of original sources, and to otherwise comply with copyright law. If you find an error or you believe we have failed to provide proper acknowledgment, please contact us at danaweb@austin.utexas.edu.

Reproduced by Pearson from electronic files supplied by the author.

We welcome your comments and suggestions for improvements. Please contact us at

 danaweb@austin.utexas.edu or at the mailing address above.
About the Charles A. Dana Center at The University of Texas at Austin

The Dana Center develops and scales math and science education innovations to support educators, administrators, and policy makers in creating seamless transitions throughout the K-14 system for all students, especially those who have historically been underserved.
We work with our nation's education systems to ensure that every student leaves school prepared for success in postsecondary education and the contemporary workplace-and for active participation in our modern democracy. We are committed to ensuring that the accident of where a student attends school does not limit the academic opportunities he or she can pursue. Thus, we advocate for high academic standards, and we collaborate with local partners to build the capacity of education systems to ensure that all students can master the content described in these standards.
Our portfolio of initiatives, grounded in research and two decades of experience, centers on mathematics and science education from prekindergarten through the early years of college. We focus in particular on strategies for improving student engagement, motivation, persistence, and achievement.
We help educators and education organizations adapt promising research to meet their local needs and develop innovative resources and systems that we implement through multiple channels, from the highly local and personal to the regional and national. We provide long-term technical assistance, collaborate with partners at all levels of the education system, and advise community colleges and states.
We have significant experience and expertise in the following:

- Developing and implementing standards and building the capacity of schools, districts, and systems
- Supporting education leadership, instructional coaching, and teaching
- Designing and developing instructional materials, assessments, curricula, and programs for bridging critical transitions
- Convening networks focused on policy, research, and practice

The Center was founded in 1991 at The University of Texas at Austin. Our staff members have expertise in leadership, literacy, research, program evaluation, mathematics and science education, policy and systemic reform, and services to high-need populations. We have worked with states and education systems throughout Texas and across the country. For more information about our programs and resources, see our homepage at www.utdanacenter.org.

About the Dana Center Mathematics Pathways

The Dana Center Mathematics Pathways (DCMP) is a systemic approach to improving student success and completion through implementation of processes, strategies, and structures based on four fundamental principles:

1. Multiple pathways with relevant and challenging mathematics content aligned to specific fields of study
2. Acceleration that allows students to complete a college-level math course more quickly than in the traditional developmental math sequence
3. Intentional use of strategies to help students develop skills as learners
4. Curriculum design and pedagogy based on proven practice

The Dana Center has developed curricular materials for three accelerated pathways-Statistical Reasoning, Quantitative Reasoning, and Reasoning with Functions I and Reasoning with Functions II (a two-course preparation for Calculus). The pathways are designed for students who have completed arithmetic or who are placed at a beginning algebra level. All three pathways have a common starting point-a developmental math course that helps students develop foundational skills and conceptual understanding in the context of collegelevel course material.
In the first term, we recommend that students also enroll in a learning frameworks course to help them acquire the strategies-and tenacity-necessary to succeed in college. These strategies include setting academic and career goals that will help them select the appropriate mathematics pathway.
In addition to the curricular materials, the Dana Center has developed tools and services to support project implementation. These tools and services include an implementation guide, data templates and planning tools for colleges, and training materials for faculty and staff.

Acknowledgments

The development of the Dana Center Mathematics Pathways curricular materials began with the formation of the DCMP Curricular Design Team, who set the design standards for how the curricular materials for individual DCMP courses would be designed. The team members are:

Richelle (Rikki) Blair, Lakeland Community College (Ohio)
Rob Farinelli, College of Southern Maryland (Maryland)
Amy Getz, Charles A. Dana Center (Texas)
Roxy Peck, California Polytechnic State University (California)

Sharon Sledge, San Jacinto College (Texas)
Paula Wilhite, Northeast Texas Community College (Texas)
Linda Zientek, Sam Houston State University (Texas)

The Dana Center then convened faculty from each of the DCMP codevelopment partner institutions to provide input on key usability features of the instructor supports in curricular materials and pertinent professional development needs. Special emphasis was placed on faculty who need the most support, such as new faculty and adjunct faculty. The Usability Advisory Group members are:
Ioana Agut, Brazosport College (Texas)
Eddie Bishop, Northwest Vista College (Texas)
Alma Brannan, Midland College (Texas)
Ivette Chuca, El Paso Community College (Texas)
Tom Connolly, Charles A. Dana Center (Texas)
Alison Garza, Temple College (Texas)
Colleen Hosking, Austin Community College (Texas)

Juan Ibarra, South Texas College (Texas)
Keturah Johnson, Lone Star College (Texas)
Julie Lewis, Kilgore College (Texas)
Joey Offer, Austin Community College (Texas)
Connie Richardson, Charles A. Dana Center (Texas)
Paula Talley, Temple College (Texas)
Paige Wood, Kilgore College (Texas)

Funding and support for the Dana Center Mathematics Pathways were provided by the Carnegie Corporations of New York, Bill \& Melina Gates Foundation, Greater Texas Foundation, Houston Endowment, Kresge Foundation, Meadows Foundation, Noyce Foundation, the State of Texas, and TG.
Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of these funders or The University of Texas at Austin. This publication was also supported through a collaboration between the Charles A. Dana Center, Texas Association of Community Colleges, and Pearson Education, Inc.

Acknowledgments for Version 1.0

Initial development of the outcomes, framework, and sample prototype for the STEM-Prep pathway was supported by the Carnegie Corporation of New York. Development of the Reasoning with Functions I course, which is the first course in the STEM-Prep pathway, is funded by Houston Endowment, Kresge Foundation, and the State of Texas.

Unless otherwise noted, all staff listed are with the Charles A. Dana Center at The University of Texas at Austin.

Project Leads and Authors

Francisco Savina, project lead, course program specialist, mathematics
Stuart Boersma, lead author, professor of mathematics, Central Washington University (Ellensburg, Washington)
Amy Getz, Amy Getz, strategic implementation lead
Connie J. Richardson, advisory lead, course program specialist, mathematics Jeff Shaver, course program specialist, mathematics

John P. (JP) Anderson, professor of mathematics, San Jacinto College (Houston, Texas) Thomas J. Connolly, instructional designer, University of Texas at Austin
Scott Guth, professor of mathematics and computer science, Mt. San Antonio College (Walnut, California) David Hunter, professor of mathematics, Westmont College (Montecito, California)
Andrea Levy, mathematics instructor, Seattle Central Community College (Seattle, Washington)
Aaron Montgomery, professor of mathematics, Central Washington University (Ellensburg, Washington) Jeff Morford, mathematics instructor, Henry Ford College (Dearborn, Michigan)
Hilary Risser, associate professor and department chair of mathematical sciences, Montana Tech of the University of Montana (Butte, Montana)
Paula Talley, director of student success division and mathematics instructor, Temple College (Temple, Texas)
Ricardo Teixeira, assistant professor of mathematics, University of Houston-Victoria (Victoria, Texas)

Reviewers

Caren Diefenderfer, professor of mathematics, Hollins University (Roanoke, Virginia) Justin Hill, mathematics instructor, Temple College (Temple Texas)
Jeff Morford, mathematics instructor, Henry Ford College (Dearborn, Michigan) Jack Rotman, Lansing Community College (Lansing, Michigan)

Pilot Faculty

Rebecca Hartzler, faculty engagement lead, director of grants and special projects in STEM, Seattle Central Community College

Sandra L. Bowen Franz, associate professor, University of Cincinnati (Cincinnati, Ohio)
Emily Constancio, professor of mathematics, Ranger College (Ranger, Texas)
John Harland, assistant professor of mathematics, Palomar College (San Marcos, California)
Justin Hill, mathematics instructor, Temple College (Temple, Texas)
Cynthia Martinez, chair of mathematics department, Temple College (Temple, Texas)
Wendy Metzger, professor of mathematics, Palomar College (San Marcos, California)
Paula Talley, director of student success division and mathematics instructor, Temple College (Temple, Texas)
Anne Voth, professor of mathematics, Palomar College (San Marcos, California)

Design Teams for the STEM-Prep Pathway (Reasoning with Functions I and Reasoning with Functions II)

Content Design Team

David M. Bressoud, DeWitt Wallace Professor, Macalester College (St. Paul, Minnesota)
Helen Burn, professor of mathematics, Highline Community College (Des Moines, Washington)
Marilyn P. Carlson, professor of mathematics education, Arizona State University (Tempe, Arizona)
Eric Hsu, professor of mathematics, San Francisco State University
Michael Oehrtman, associate professor, Oklahoma State University

Structure Design Team

John P. (JP) Anderson, professor of mathematics, San Jacinto College (Houston, Texas)
Colleen Berg, mechanical engineering instructor, Texas Tech University (Lubbock, Texas)
Caren Diefenderfer, professor of mathematics, Hollins University (Roanoke, Virginia)
Suzanne Dorée, professor of mathematics, Augsburg College (Minneapolis, Minnesota)
Bekki George, instructional assistant professor, University of Houston, Main Campus (Houston, Texas)
Suzette Goss, professor of mathematics, Lone Star College-Kingwood (Kingwood, Texas)
Marc Grether, senior lecturer, University of North Texas (Denton, Texas)
Debbie Hanus, mathematics faculty, Brookhaven College, Dallas County Community College System (Farmers Branch, Texas)
Brian Loft, associate professor and chair, Sam Houston State University (Huntsville, Texas)
Lyle O'Neal, associate professor of mathematics, Lone Star College-Kingwood (Kingwood, Texas)
Debbie Pace, associate dean, College of Science and Mathematics, Stephen F. Austin State University (Nacogdoches, Texas)
Joanne Peeples, professor of mathematics, El Paso Community College (El Paso, Texas)
Virgil Pierce, professor of mathematics, the University of Texas-Pan American (Edinburg, Texas)
Jim Roznowski, past president of American Mathematical Association of Two-Year Colleges (AMATYC)

Project Staff

Adam Castillo, graduate research assistant Rachel Jenkins, lead editor
Monette C. McIver, manager, higher education services Erica Moreno, program coordinator
Phil Swann, senior designer
Sarah Wenzel, administrative associate

Pearson Educ ation, Inc. Staff

Strategic Account Manager Tanja Eise Editor in Chief Anne Kelly
Acquisitions Editor Chelsea Kharakozova Digital Instructional Designer Tacha Gennarino Senior Project Manager Dana Toney
Director of Math Development \& Production, MyMathLab Ruth Berry
MathXL Content Specialist Kristina Evans

Managing Producer Karen Wernholm Product Marketing Manager Alicia Frankel
Senior Author Support/Technology Specialist Joe Vetere
Manager, Rights and Permissions Gina Cheselka Manufacturing Buyer Carol Melville Program Design Lead Beth Paquin Composition Dana Bettez

Contents

$\begin{aligned} & 0 \\ & 0 \\ & \text { ® } \\ & \hline \end{aligned}$		Lesson Title and Description				
-	-	Curriculum Overview	xvi	-	-	-
-	-	Prep Week Ideas for your syllabus	xlvi	-	-	-
Lesson 1: Area Under a Curve and an Introduction to Optimization						
1.A	-	Approximating Area Approximate the area under the graph of a function using rectangles	1	1	1	1.A
1.B	1.B	Optimization and Rectangles Use technology to optimize the area and perimeter of rectangular regions	6	5	5	1.B
1.C	-	Our Learning Community Seek and give help	11	9	9	

Lesson 2: Geometry of Triangles and the Pythagorean Theorem

2.A	2.A	Geometry of Triangles: Area				
		Determine how much to reduce the height of a triangle in order to create a new triangle with a desired area	12	11	18	2.A
2.B	2.B	Right Triangles and Rates	15	13	23	2.B
		Determine the distance between two points in a plane using the Pythagorean theorem				
		Determine the relationships between the rates of change among the sides of a dynamically changing right triangle				
2.C	2.C	Distance and Arc Length	18	15	27	2.C
		Use the Pythagorean theorem to evaluate the distance between two points				
		Use the Pythagorean theorem to estimate the length of a curve				
		Use distances measured to determine average velocities				

		Lesson Title and Description	志			Practice Assignment
Lesson 3: Rates of Change: Expanding Circles and Spheres						
3.A	3.A	Circles and Rates of Change Determine the average rate of change of the circumference of a circle as a function of the average rate of change of the radius Determine the average rate of change of the area of a circle as a function of the average rate of change of the radius Determine the average rate of change of the volume of a disk as a function of the average rate of change of the radius	22	19	31	3.A
3.B	$3 . \mathrm{B}$	Spheres and Rates of Change Use the relationship between volume and radius of a sphere to determine the relationship between their rates of change Compute rates of change	25	21	36	3.B
3.C	-	Forming Effective Study Groups Describe how to form and conduct an effective study group Identify key characteristics of effective study groups	29	23	41	-
Lesson 4: Equations of Circles						
4.A	$4 . \mathrm{A}$	Distance on the Line Compute the distance between two numbers on the number line as represented by an absolute value Solve equations and inequalities involving absolute values Interpret intervals using absolute value notation	31	25	45	4.A

İ Oid O		Lesson Title and Description		$\begin{aligned} & \text { In-Class Activities } \\ & \text { (Student) } \end{aligned}$		
4.B	4.B	Circles	36	29	50	4.B
		Given a point, P and a positive distance, r , determine an equation whose graph is a circle centered at P and with radius r				
		Given two points in the plane, determine the equation of the smallest circle containing both points				
		Given two points in the plane, determine the center and radius of the smallest circle containing both points				
4.C	4.C	Equations of Circles	39	31	54	4.C
		Determine the center and radius of the graph of a quadratic equation when the graph is a circle				
		Sketch the graph of a quadratic equation				
Lesson 5: Similar Triangles, Circular Motion, and Measuring Angles						
5.A	5.A	Moving Shadows	43	33	60	5.A
		Use similar triangles to model static relationships between quantities				
		Use similar triangles to model dynamic relationships between quantities				
5.B	5.B	Home Improvement	47	37	65	5.B
		Set up and solve geometric optimization problems				
		Maximize the area of a rectangle inscribed inside an equilateral triangle				
5.C	5.C	You Spin Me Round	52	39	71	5.C
		Calculate the speed of an object in uniform circular motion				
		Use proportional reasoning to find arc lengths and areas of circular sectors				
		Determine the radian measure of the central angle of a given circular sector				

$\begin{aligned} & \text { E } \\ & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$		Lesson Title and Description	势	$\begin{aligned} & \text { In-Class Activities } \\ & \text { (Student) } \end{aligned}$		
Lesson 6: Related Rates and Optimization: Cones and Cylinders						
6.A	6.A	Red Plastic Cup Calculate the surface area and volume of a cylinder Calculate surface areas and volumes of cones and frustrums	56	43	77	6.A
6.B	6.B	Can It! Determine the dimensions of a cylinder of given volume with minimum surface area	60	47	82	6.B
6.C	6.C	Off to a Rocky Start Model the changing dimensions in a cone Compute the average rates of change of dimensions in a cone Estimate instantaneous rates of change of dimensions in a cone	64	51	87	6.C
6.D	6.D	A Geometric Problem Determine the dimensions of a cylinder inscribed in a cone which produces the greatest volume	69	55	92	6.D
Lesson 7: Sinusoidal Models						
7.A	7.A	Modeling Tides Sketch a graph of a function based on data to model a physical situation Interpret a mathematical model of a physical situation and use the model to make decisions	72	57	96	7.A
7.B	7.B	Pendulum Motion Identify the period of a sinusoidal function from its graph Given the graph of a sinusoidal position function, sketch the graph of the corresponding velocity function	77	61	101	7.B

$\begin{aligned} & \tilde{0} \\ & \text { U } \\ & \text { O} \end{aligned}$		Lesson Title and Description			$\begin{gathered} \text { suo!̣sə888ns } \\ \text { Bu!̣ueld uossəT } \end{gathered}$	
7.C	7.C	Modeling Temperature Change Identify the period, amplitude, and midline of a sinusoidal function given its graph Interpret the meanings of period, amplitude, and midline in the context of a model Create a graphical approximation of a sinusoidal function which models given data	82	65	105	7.C
Lesson 8: The Unit Circle						
8.A	8.A	Constructing Sinusoidals From Circles Graph the horizontal and vertical coordinates of a point as it moves around a circle Interpret circle diagrams in the context of a model	87	69	109	8.A
8.B	8.B	The Sine and Cosine Functions Compute some important values of the sine and cosine functions using the unit circle Evaluate and graph the sine and cosine functions using a graphing calculator or app, using radians appropriately Interpret formulas for sinusoidal functions in the context of a model	91	73	112	8.B
8.C	8.C	Special Angles Locate special angles on the unit circle Give measures of special angles on the unit circle, both in degrees and in radians Compute exact values for the sine and cosine of these special angles	95	77	116	8.C
8.D	8.D	Special Values of Sinusoidal Functions Locate the special points on the graphs of sinusoidal functions Interpret the special points of a sinusoidal function in the context of a model	101	81	120	8.D

$\begin{aligned} & \text { E } \\ & \text { O} \\ & \text { Oud } \end{aligned}$		Lesson Title and Description			$\begin{gathered} \text { suo!̣sə88ns } \\ \text { su!̣uueld uossəT } \end{gathered}$	
Lesson 9: Circles and Sinusoidal Models						
9.A	9.A	Non-Unit Circles Model a physical situation using a nonunit circle Sketch the graph of a sine or cosine function represented by a non-unit circle Fund a formula for a sine or cosine function represented by a non unit circle	105	85	124	$9 . \mathrm{A}$
9.B	9.B	Changes in Angle and Radius Find the (x, y) coordinates of points on a nonunit circle Find the radius of a non-unit circle and an angle to correspond to a point (x, y) Describe how changes in angle and radius affect the location of points	110	89	130	9.B
9.C	9.C	Damped Harmonic Motion Model damped harmonic motion with a function using formulas and graphs	114	93	135	$9 . \mathrm{C}$
Lesson 10: Analyzing Sinusoidal Functions						
10.A	10.A	Modeling the Motion of a Pendulum Write and graph equations that model the oscillations of a pendulum Identify those parameters that affect the amplitude of a pendulum's motion	118	97	139	10.A
10.B	10.B	Modeling Cell Phone Signals Write equations that model the oscillations of a pendulum Identify those parameters that affect the amplitude of a pendulum's motion	123	101	143	10.B
10.C	10.C	Modeling the Vibration of a Cell Phone Determine the amount of horizontal shift present in a sine function	129	105	148	10.C

		Lesson Title and Description	In-Class Activities with Answers			
Lesson 11: Transformations of Sinusoidal Functions						
11.A	11.A	Staying Current Around the World Starting with a formula, calculate the period and amplitude of a sine function and use this information to produce a graph of the function Estimate the period and amplitude of a sine function from its graph	135	109	153	11.A
11.B	11.B	Periodic Models with Vertical Shifts Determine maximum and minimum values (and when they occur) of a sinusoidal model Determine the period of a sinusoidal model Explain the similarities and differences after a function has undergone a vertical shift	141	113	158	11.B
11.C	$11 . \mathrm{C}$	Periodic Models with Horizontal Shifts Make appropriate changes to an algebraic model to result in the necessary horizontal shift Discuss how different parameters will affect the amplitude, period, vertical shift, and horizontal shifts of sine functions	144	115	162	11.C
Lesson 12: Describing Change in Sinusoidal Functions						
12.A	12.A	Rate of Change of Sine Compute the average rate of change of $\sin \mathrm{x}$ Determine a formula for the average rate of change of $\sin \mathrm{x}$ Use technology to graph the average rate of change of $\sin \mathrm{x}$	148	119	166	12.A
12.B	12.B	A Closer Look at Rate of Change of Sine Examine, compute, and compare the maximum average rate of change for a variety of sine functions	151	121	170	12.B

$\begin{aligned} & \text { E } \\ & \text { W0 } \\ & \text { OU } \end{aligned}$	Preview Assignment	Lesson Title and Description				Practice Assignment
12.C	12.C	Applications of Rate of Change of Sine Use a graph to estimate where the greatest average rate of change may occur Calculate the average rate of change of a complex function Determine when oscillations have decreased below a given criterion	162	125	175	12.C
12.D	12.D	Amplitude Decay of Sine Functions Determine the formula for a function given its graph Identify how the amplitude of a given function decays	169	129	179	12.D
Lesson 13: Right Triangle Trigonometry						
13.A	13.A	From Circles to Triangles Use sine and cosine to determine side lengths of a right triangle	172	131	183	13.A
13.B	13.B	From Circles to Triangles (Continued) Use sine and cosine to determine side lengths of a right triangle	177	135	187	13.B
13.C	13.C	Hypotenuse Trouble Use the right triangle definitions of sine and cosine to find the hypotenuse of a right triangle when given a leg and an acute angle Fund a second leg using the Pythagorean theorem once the hypotenuse and the first leg are known	180	137	192	13.C
13.D	13.D	A Sine of Things to Come Solve for a missing leg of a right triangle when given one leg and an acute angle without solving for the hypotenuse first	182	139	196	13.D

	Preview Assignment	Lesson Title and Description				
Lesson 14: Inverse Trigonometric Functions						
14.A	14.A	Does Inverse Cosine Exist? Identify a reasonable restricted domain for the cosine function Determine the domain and range of the inverse cosine function Evaluate inverse cosine at several special values	185	143	200	14.A
14.B	14.B	Understanding the Inverse Cosine Functions Plot points on the graph of an inverse function given points on the graph of the function Use the graph of a function to help determine the steepness of the graph of the inverse function Sketch a graph of the inverse cosine function	189	147	204	14.B
14.C	14.C	Is This Ladder Safe? Use inverse sine and cosine to determine when a ladder is being used safely Solve simple expressions using inverse sine and cosine	193	151	208	14.C
Lesson 15: Solving Trigonometric Equations						
15.A	15.A	Equations Involving Sine and Cosine Solve for an unknown angle in an equation involving sine or cosine Use a calculator or app to evaluate inverse sine and inverse cosine Use a model involving inverse trigonometric functions to make decisions about a physical situation	196	153	212	15.A
15.B	15.B	Solving for Obtuse Angles Find angle measures in the first and second quadrants corresponding to values of sine and cosine Determine the correct angle corresponding to a given value of sine or cosine, in the context of a problem	200	157	217	15.B

$\begin{aligned} & \text { Ē } \\ & \text { Ẁ } \\ & \text { OU } \end{aligned}$		Lesson Title and Description	势			
15.C	15.C	Choosing the Quadrant Solve and Equation involving sine or cosine for an unknown angle in a specified quadrant or interval Find multiple solutions for a trigonometric equation	204	161	222	15.C
15.D	15.D	Solving Trigonometric Equations Find all of the solutions to an equation involving sine or cosine within a specified interval	209	165	226	15.D
Lesson 16: The Pythagorean Identity and Polar Curves						
16.A	16.A	The Pythagorean Identity Prove identities using the Pythagorean identity Use the Pythagorean identity to find values of sine and cosine	213	169	231	16.A
16.B	16.B	Is My Answer Right? Use the Pythagorean identity to rewrite trigonometric expressions in equivalent forms	216	171	236	16.B
16.C	16.C	Polar Graphs Plot Points in Polar Coordinates Use Technology to produce graphs of polar curves	220	173	241	16.C
16.D	16.D	A Gallery of Polar Curves Convert a Cartesian equation to polar form Graph polar curves using technology	225	117	247	16.D

$\begin{aligned} & \text { E } \\ & \text { Un } \\ & \text { O} \end{aligned}$	Preview Assignment	Lesson Title and Description		$\begin{aligned} & \text { In-Class Activities } \\ & \text { (Student) } \end{aligned}$		Practice Assignment
Lesson 17: Sum and Difference Identities						
17.A	17.A	Angle and Sum Identities Apply the angle sum identities for sine and cosine	232	181	252	17.A
17.B	17.B	What's the Difference Manipulate trigonometric expressions using the angle sum and difference identities for sine and cosine	236	183	256	17.B
17.C	17.C	Guitar Harmonics Manipulate trigonometric expressions using the angle sum and difference formulas for sine and cosine Determine the locations of the nodes of a standing wave	241	185	260	17.C
17.D	17.D	In Tune Use a sum-to-product identity to rewrite and analyze the sum of two sine functions	246	189	266	17.D
Lesson 18: Double and Half-Angle Formulas						
18.A	18.A	Projectile Motion Use the double-angle formula for sine to maximize certain trigonometric expressions Use the double-angle formula to determine the sine of twice an angle based on the sine and cosine of the original angle	250	191	272	18.A
18.B	18.B	Malus' Law Use the double angle formula for cosine to solve equations involving a $\cos ^{2}(x)$ Use the double angle formula to determine the cosine of twice an angle based on the sine and cosine of the original angle	255	195	277	18.B

$\begin{aligned} & \text { E } \\ & \text { Di } \\ & 0 \end{aligned}$	Preview Assignment	Lesson Title and Description				
18.C	18.C	Planetary Motion Use the half angle formulas to compute the sine and cosine values of a half angle based on the sine and cosine values of the original angle	259	199	281	18.C
18.D	18.D	Circular Motion Solve a trigonometric equation by obtaining common arguments for all trigonometric functions	264	203	286	18.D
Lesson 19: Law of Sines and Law of Cosines						
19.A	19.A	The Montreal Tower Solve oblique triangles in which two angles and one side are known	268	205	290	19.A
19.B	19.B	Can You Hear Me Now? Use the Law of Sines to determine missing angles in triangles	272	209	295	19.B
19.C	19.C	Play Ball! Use the Law od Cosines to find the missing side of a triangle when two sides and the angle between them are given	277	213	300	19.C
19.D	19.D	Here Comes the Sun Find the missing angles in a triangle when all three sides are known	282	217	304	19.D
19.E	19.E	Sines or Cosines? Develop a strategy for solving a given oblique triangle	286	219	309	19.E
Lesson 20: Secant and Tangent Functions						
20.A	20.A	The Tangent Function Use the tangent function to determine unknown lengths in a right triangle	290	221	315	20.A
20.B	20.B	Graphing the Tangent Function Sketch the graph of the tangent function Interpret the graph of the tangent function in the context of a model	295	225	319	20.B

| | 301 |
| :--- | :--- | :--- |

Overview	1
Angle Measure	3
Arithmetic with Fractions	6
Combining Like Terms	14
Coordinate Plane	17
Dimensional Analysis	21
Distributive Property	27
Exponent Rules	29
Factoring	32
Factoring Polynomials	41
Four Representations of Functions	47
Geometry	50
Graphing Technology	60
Lines	76
Order of Operations	81
Parabolas and Quadratic Functions	82
Roots and Radicals	88
Scientific Notation	94
Slope	96
Solving Quadratic Equations	98
Sums and Differences of Cubes	103

Transformations	105
Trigonometric Formulas	110
Writing Principles	119
Glossary	Glossary -1

